Brain maturation: Predicting individual BrainAGE in children and adolescents using structural MRI

نویسندگان

  • Katja Franke
  • Eileen Luders
  • Arne May
  • Marko Wilke
  • Christian Gaser
چکیده

BACKGROUND Neural development during human childhood and adolescence involves highly coordinated and sequenced events, characterized by both progressive and regressive processes. Despite a multitude of results demonstrating the age-dependent development of gray matter, white matter, and total brain volume, a reference curve allowing prediction of structural brain maturation is still lacking but would be clinically valuable. For the first time, the present study provides a validated reference curve for structural brain maturation during childhood and adolescence, based on structural MRI data. METHODS AND FINDINGS By employing kernel regression methods, a novel but well-validated BrainAGE framework uses the complex multidimensional maturation pattern across the whole brain to estimate an individual's brain age. The BrainAGE framework was applied to a large human sample (n=394) of healthy children and adolescents, whose image data had been acquired during the NIH MRI study of normal brain development. Using this approach, we were able to predict individual brain maturation with a clinically meaningful accuracy: the correlation between predicted brain age and chronological age resulted in r=0.93. The mean absolute error was only 1.1 years. Moreover, the predicted brain age reliably differentiated between all age groups (i.e., preschool childhood, late childhood, early adolescence, middle adolescence, late adolescence). Applying the framework to preterm-born adolescents resulted in a significantly lower estimated brain age than chronological age in subjects who were born before the end of the 27th week of gestation, demonstrating the successful clinical application and future potential of this method. CONCLUSIONS Consequently, in the future this novel BrainAGE approach may prove clinically valuable in detecting both normal and abnormal brain maturation, providing important prognostic information.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of the APOE Genotype on Individual BrainAGE in Normal Aging, Mild Cognitive Impairment, and Alzheimer’s Disease

In our aging society, diseases in the elderly come more and more into focus. An important issue in research is Mild Cognitive Impairment (MCI) and Alzheimer's Disease (AD) with their causes, diagnosis, treatment, and disease prediction. We applied the Brain Age Gap Estimation (BrainAGE) method to examine the impact of the Apolipoprotein E (APOE) genotype on structural brain aging, utilizing lon...

متن کامل

BrainAGE in Mild Cognitive Impaired Patients: Predicting the Conversion to Alzheimer’s Disease

Alzheimer's disease (AD), the most common form of dementia, shares many aspects of abnormal brain aging. We present a novel magnetic resonance imaging (MRI)-based biomarker that predicts the individual progression of mild cognitive impairment (MCI) to AD on the basis of pathological brain aging patterns. By employing kernel regression methods, the expression of normal brain-aging patterns forms...

متن کامل

BrainAGE score indicates accelerated brain aging in schizophrenia, but not bipolar disorder.

BrainAGE (brain age gap estimation) is a novel morphometric parameter providing a univariate score derived from multivariate voxel-wise analyses. It uses a machine learning approach and can be used to analyse deviation from physiological developmental or aging-related trajectories. Using structural MRI data and BrainAGE quantification of acceleration or deceleration of in individual aging, we a...

متن کامل

Premature brain aging in humans exposed to maternal nutrient restriction during early gestation.

BACKGROUND Prenatal exposure to undernutrition is widespread in both developing and industrialized countries, causing irreversible damage to the developing brain, resulting in altered brain structure and decreased cognitive function during adulthood. The Dutch famine in 1944/45 was a humanitarian disaster, now enabling studies of the effects of prenatal undernutrition during gestation on brain ...

متن کامل

Advanced BrainAGE in older adults with type 2 diabetes mellitus

Aging alters brain structure and function and diabetes mellitus (DM) may accelerate this process. This study investigated the effects of type 2 DM on individual brain aging as well as the relationships between individual brain aging, risk factors, and functional measures. To differentiate a pattern of brain atrophy that deviates from normal brain aging, we used the novel BrainAGE approach, whic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 63 3  شماره 

صفحات  -

تاریخ انتشار 2012